Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1

Ryuichi Inaba, Takeshi Nishio

    Research output: Contribution to journalArticlepeer-review

    88 Citations (Scopus)


    Nucleotide sequences of orthologs of the S-locus related gene, SLR1, in 20 species of Brassicaceae were determined and compared with the previously reported SLR1 sequences of six species. Identities of deduced amino-acid sequences with Brassica oleracea SLR1 ranged from 66.0% to 97.6%, and those with B. oleracea SRK and SLR2 were less than 62% and 55%, respectively. In multiple alignment of deduced amino-acid sequences, the 180-190th amino-acid residues from the initial methionine were highly variable, this variable region corresponding to hypervariable region I of SLG and SRK. A phylogenetic tree based on the deduced amino-acid sequences showed a close relationship of SLR1 orthologs of species in the Brassicinae and Raphaninae. Brassica nigra SLR1 was found to belong to the same clade as Sinapis arvensis and Diplotaxis siifolia, while the sequences of the other Brassica species belonged to another clade together with B. oleracea and Brassica rapa. The phylogenetic tree was similar to previously reported trees constructed using the data of electrophoretic band patterns of chloroplast DNA, though minor differences were found. Based on synonymous substitution rates in SLR1, the diversification time of SLR1 orthologs between species in the Brassicinae was estimated. The evolution and function of SLR1 and the phylogenetic relationship of Brassiceae plants are discussed.

    Original languageEnglish
    Pages (from-to)1159-1165
    Number of pages7
    JournalTheoretical and Applied Genetics
    Issue number8
    Publication statusPublished - 2002 Dec 1


    • Brassicaceae
    • Molecular evolution
    • Phylogenetic relationship
    • Pollen-stigma interaction
    • S-multigene family

    ASJC Scopus subject areas

    • Biotechnology
    • Agronomy and Crop Science
    • Genetics


    Dive into the research topics of 'Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1'. Together they form a unique fingerprint.

    Cite this