Photophysics of confined excitons in CuCl nanoparticles - Confinement of exciton excited states

T. Itoh, K. Yamanaka, K. Edamatsu, T. Uozumi, Y. Kayanuma

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Exciton excited states of CuCl nanoparticles dispersed in NaCl matrix have been investigated by means of two-photon excitation and two-step IR transient absorption. In the two-photon excitation spectra, there appears a distinct absorption edge. As the particle radius decreases from 6.3nm to 1.6nm, the edge energy increases by about 0.15eV, more than twice as large as that of the lowest IS state. The fast decay component of the IR transient absorption under pulsed excitation of the lowest IS exciton shows a broad band which shifts from 0.2 to 0.4eV as the radius decreases from >10nm to 1.4nm. These absorption edge and band are ascribed to the nP-like Rydberg excited states of the confined excitons. The large energy shift indicates that the weak confinement which is typically valid for the lowest IS exciton state in CuCl nanoparticles is no more applicable to these excited states. Their spectra and confinement effect are discussed in comparison with theoretical prediction.

Original languageEnglish
Pages (from-to)3569-3573
Number of pages5
JournalInternational Journal of Modern Physics B
Volume15
Issue number28-30
DOIs
Publication statusPublished - 2001 Dec 10
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Photophysics of confined excitons in CuCl nanoparticles - Confinement of exciton excited states'. Together they form a unique fingerprint.

  • Cite this