Photoelectron angular distributions in infrared one-photon and two-photon ionization of FEL-pumped Rydberg states of helium

S. Mondal, H. Fukuzawa, K. Motomura, T. Tachibana, K. Nagaya, T. Sakai, K. Matsunami, S. Yase, M. Yao, S. Wada, H. Hayashita, N. Saito, C. Callegari, K. C. Prince, P. O'Keeffe, P. Bolognesi, L. Avaldi, C. Miron, M. Nagasono, T. TogashiM. Yabashi, K. L. Ishikawa, I. P. Sazhina, A. K. Kazansky, N. M. Kabachnik, K. Ueda

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

The photoelectron angular distributions (PADs) have been investigated for infrared (IR) ionization of He atoms excited to Rydberg states by extreme ultraviolet free-electron laser pulses. The experiment was carried out with two pulses which do not overlap in time. Depending on the intensity of the IR pulses, one IR photon ionization or additionally two-photon above-threshold ionization is observed. For low IR intensity, the PAD is well described by a contribution of s and d partial waves in accordance with early experiments. At high IR intensity, the PAD for two IR photon ionization clearly shows the contribution of higher partial waves. The experimental data are compared with the results of theoretical calculations based on solving the time-dependent Schrödinger equation.

Original languageEnglish
Article number205601
JournalJournal of Physics B: Atomic, Molecular and Optical Physics
Volume46
Issue number20
DOIs
Publication statusPublished - 2013 Oct 28

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Photoelectron angular distributions in infrared one-photon and two-photon ionization of FEL-pumped Rydberg states of helium'. Together they form a unique fingerprint.

Cite this