Phonon-activated electron-stimulated desorption of halogens from Si (100) - (2×1)

B. R. Trenhaile, V. N. Antonov, G. J. Xu, Abhishek Agrawal, A. W. Signor, R. E. Butera, Koji S. Nakayama, J. H. Weaver

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


Spontaneous desorption of Cl, Br, and I from n - and p -type Si (100) - (2×1) was studied with scanning tunneling microscopy at temperatures of 620-800 K where conventional thermal bond breaking should be negligible. The activation energies and prefactors determined from Arrhenius plots indicate a novel reaction pathway that is initiated by the capture of electrons which have been excited by phonon processes into Si-halogen antibonding states. This configuration is on a repulsive potential energy surface, and it is sufficiently long lived that desorption can occur, constituting phonon-activated electron-stimulated desorption. Surprisingly, the Arrhenius plots for differently doped samples crossed and, above a critical temperature, the reaction with the largest activation energy had the highest rate. This is explained by large entropy changes associated with the multiphonon nature of the electronic excitation. For Cl desorption from p -type Si, these entropy changes amounted to 34 kB. They were 19 kB, 13 kB, and 8 kB for Br desorption from p -type, lightly doped n -type, and heavily doped n -type Si, respectively. The desorption rates for I were nearly three orders of magnitude larger than the rates observed for Cl and Br. Here, the Si-I antibonding states overlap the conduction-band minimum, so that conduction-band electrons with this energy can be captured by the Si-I antibonding states. Together, these results reveal that a complex relationship exists between phonons and electronic excitations during chemical reactions at surfaces.

Original languageEnglish
Article number125318
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number12
Publication statusPublished - 2006
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Phonon-activated electron-stimulated desorption of halogens from Si (100) - (2×1)'. Together they form a unique fingerprint.

Cite this