Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn-Cr)AlGe films fabricated onto thermally oxidized silicon substrates

Research output: Contribution to journalArticlepeer-review

Abstract

Perpendicularly magnetized films exhibiting small saturation magnetizations (Ms) are essential for spin-transfer-torque magnetoresistive random access memories (MRAMs). In this study, the intermetallic compound (Mn-Cr)AlGe with a Cu2Sb crystal structure was investigated as a material exhibiting low Ms (∼300 kA/m) and high-perpendicular magnetic anisotropy energy (Ku). The layer thickness dependence of Ku and effects of Mg-insertion layers at the top and bottom (Mn-Cr)AlGe|MgO interfaces were studied for film samples fabricated onto thermally oxidized silicon substrates to realize high Ku values in the thickness range of a few nanometers. The values of Ku were approximately 7×105 and 2×105 J/m3 at room temperature for 5 and 3 nm-thick (Mn-Cr)AlGe films, respectively, with an optimum annealing temperature of 400 °C and Mg-insertion thicknesses of 1.4 and 3.0 nm for the top and bottom interfaces, respectively. The Mg insertions were relatively thick compared with results of similar studies of the insertion effect on magnetic tunnel junctions. Cross-sectional transmission electron microscope images revealed that the Mg-insertion layers acted as barriers to the interdiffusion of Al atoms as well as oxidization from the MgO layers. The Ku at a few-nanometer thicknesses was comparable to or higher than those reported for perpendicularly magnetized CoFeB films, which are conventionally used in MRAMs, whereas the Ms value was one third or smaller than those of the CoFeB films. The developed (Mn-Cr)AlGe films are promising materials because of their magnetic properties and their compatibility to the silicon process in film fabrication.

Original languageEnglish
Article number262404
JournalApplied Physics Letters
Volume118
Issue number26
DOIs
Publication statusPublished - 2021 Jun 28

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Perpendicular magnetic anisotropy in ultra-thin Cu<sub>2</sub>Sb-type (Mn-Cr)AlGe films fabricated onto thermally oxidized silicon substrates'. Together they form a unique fingerprint.

Cite this