Perovskite Sr1−xBaxW1−yTay(O,N)3: Synthesis by thermal ammonolysis and photocatalytic oxygen evolution under visible light

Kenta Kawashima, Mirabbos Hojamberdiev, Christina Stabler, Dragoljub Vrankovic, Kunio Yubuta, Ralf Riedel, Kazunari Domen, Katsuya Teshima

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

To study the effect of partial Ba2+-to-Sr2+ and/ or Ta5+-to-W4-6+ substitution on various properties of SrW(O,N)3, cubic perovskite-type W-and/or Ta-based oxynitrides Sr1-xBaxW1-yTay(O,N)3, where x,y = 0,0; 0.25,0; 0.125,0.125; 0,0.25; and 1.1, were synthesized by ammonolyzing their corresponding oxide precursors under an NH3 flow. The synthesized oxynitrides have highly porous structures and consist of small crystallites in the range of 53-630 nm and with specific surface areas in the range of 5.4-14.7 m2·g-1. Interestingly, the Ta5+-to-W4~6+ substitution in SrW(O,N)3 can suppress the formation of reduced tungsten species during thermal ammonolysis. The weaker absorptions beyond 560 and 580 nm in the UV-Vis diffuse reflectance spectra, which correspond to reduced tungsten species, are observed in SrW0.75Ta0.25(O,N)3 and Sr0.875Ba0.125W0.875Ta0.125(O,N)3 compared to SrW(O,N)3 and Sr0.75Ba0.25W(O,N)3. The XPS results reveal that low-valent transition metal oxides, nitrides, and oxynitrides and/or tungsten metal are present on the surfaces of the as-synthesized oxynitrides. After 5 h of the photocatalytic oxygen evolution reaction, CoOx-loaded SrW0.75Ta0.25(O,N)3 exhibited the highest amount of evolved O2 gas due to its higher specific surface area and lower concentration of intrinsic defects. During the photocatalytic reaction, the N2 gas is also evolved because of the self-oxidation of oxynitrides consuming photo-generated holes. The estimated TONs of the oxynitride samples exceeded one, evidencing that the observed O2 gas evolution reactions were catalytic. Accordingly, the photostability enhancement of oxynitrides reduces the loss of photo-generated charge carriers and increases their photocatalytic activity.

Original languageEnglish
Article number10
JournalMaterials for Renewable and Sustainable Energy
Volume6
Issue number2
DOIs
Publication statusPublished - 2017 May

Keywords

  • Oxynitride perovskite
  • Substitution
  • Visible light
  • Water oxidation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Perovskite Sr<sub>1−x</sub>Ba<sub>x</sub>W<sub>1−y</sub>Ta<sub>y</sub>(O,N)<sub>3</sub>: Synthesis by thermal ammonolysis and photocatalytic oxygen evolution under visible light'. Together they form a unique fingerprint.

Cite this