Performance of Ca1-xSrxTiO3 as barriers in dielectric barrier discharges with different Sr content

Ruixing Li, Qing Tang, Shu Yin, Tsugio Sato

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Plasma assisted catalytic technology, which uses synergetic technologies between the catalyst and plasma, has attracted much attention over the past several years. Theoretically, permittivity of a dielectric barrier influences the transferred charge of a microdischarge; thus high permittivity can improve the plasma reaction in a dielectric barrier discharge (DBD) plasma reactor. Despite the increased interest in the chemical processes, very little has been reported concerning the influence of materials of a dielectric barrier on DBD plasma reactions, since a high permittivity barrier generally exhibits low fracture strength and low dielectric strength making it break down under strong current pulses. In the present study, Ca1-xSrxTiO 3 (0.1 ≤ x ≤ 0.4) which possesses a high permittivity and a high fracture strength was prepared by liquid phase sintering and was used as a dielectric barrier for the destruction of carbon dioxide by a DBD plasma reaction. The permittivity of Ca1-xSrxTiO3 (0.1 ≤ x ≤ 0.4) increased with increasing SrTiO3 content; however, the observed CO2 conversion became greatest using Ca 0.8Sr0.2TiO3 and then decreased with increasing SrTiO3 content. These results imply that the reactivity of CO 2 destruction does not monotonously increase with increased permittivity of the Ca1-xSrxTiO3 barriers. Both amplitude and density of the current pulses ignited by Ca0.8Sr 0.2TiO3 were much greater than that of Ca 0.6Sr0.4TiO3. Further, it was confirmed that a plasma reaction uniformly proceeded using the Ca0.8Sr 0.2TiO3 barrier, but proceeded non-uniformly using the Ca0.6Sr0.4TiO3 barrier by observing the carbon deposition profiles on the surfaces of the barriers.

Original languageEnglish
Article number025
Pages (from-to)5187-5191
Number of pages5
JournalJournal of Physics D: Applied Physics
Volume40
Issue number17
DOIs
Publication statusPublished - 2007 Sep 7

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Performance of Ca<sub>1-x</sub>Sr<sub>x</sub>TiO<sub>3</sub> as barriers in dielectric barrier discharges with different Sr content'. Together they form a unique fingerprint.

Cite this