Performance Evaluation of Face Anti-Spoofing Method Using Deep Metric Learning from a Few Frames of Face Video

Koichi Ito, Asateru Kimura, Takafumi Aoki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent advances in face recognition and deep learn-ing technologies are enabling us to identify individuals from images captured by a camera from a distance. On the other hand, there is a problem that a malicious person can impersonate the registered user by presenting a photo or video of the registered user's face. Spoofing detection using video input, from which more features can be extracted than images, has not been studied very much. In this paper, we propose a method for detecting spoofing from video images of a small number of frames. The proposed method uses features extracted from video images using 3D Convolutional Neural Network (3D CNN). We also use deep metric learning to improve the accuracy of detection. We demonstrate the effectiveness of the proposed method through performance evaluation experiments using a large-scale spoofing attack dataset.

Original languageEnglish
Title of host publication2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1414-1419
Number of pages6
ISBN (Electronic)9789881476883
Publication statusPublished - 2020 Dec 7
Event2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Virtual, Auckland, New Zealand
Duration: 2020 Dec 72020 Dec 10

Publication series

Name2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Proceedings

Conference

Conference2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020
Country/TerritoryNew Zealand
CityVirtual, Auckland
Period20/12/720/12/10

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture
  • Signal Processing
  • Decision Sciences (miscellaneous)
  • Instrumentation

Fingerprint

Dive into the research topics of 'Performance Evaluation of Face Anti-Spoofing Method Using Deep Metric Learning from a Few Frames of Face Video'. Together they form a unique fingerprint.

Cite this