TY - JOUR
T1 - Patterns of genomic divergence and introgression between Japanese stickleback species with overlapping breeding habitats
AU - Ravinet, Mark
AU - Kume, Manabu
AU - Ishikawa, Asano
AU - Kitano, Jun
N1 - Publisher Copyright:
© 2020 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2020 European Society For Evolutionary Biology
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - With only a few absolute geographic barriers in marine environments, the factors maintaining reproductive isolation among marine organisms remain elusive. However, spatial structuring in breeding habitat can contribute to reproductive isolation. This is particularly important for marine organisms that migrate to use fresh- or brackish water environments to breed. The Japanese Gasterosteus stickleback species, the Pacific Ocean three-spined stickleback (G. aculeatus) and the Japan Sea stickleback (G. nipponicus) overwinter in the sea, but migrate to rivers for spawning. Although they co-occur at several locations across the Japanese islands, they are reproductively isolated. Our previous studies in Bekanbeushi River showed that the Japan Sea stickleback spawns in the estuary, while the Pacific Ocean stickleback mainly spawns further upstream in freshwater. Overall genomic divergence was very high with many interspersed regions of introgression. Here, we investigated genomic divergence and introgression between the sympatric species in the much shorter Tokotan River, where they share spawning sites. The levels of genome-wide divergence were reduced and introgression was increased, suggesting that habitat isolation substantially contributes to a reduction in gene flow. We also found that genomic regions of introgression were largely shared between the two systems. Furthermore, some regions of introgression were located near loci with a heterozygote advantage for juvenile survival. Taken together, introgression may be partially driven by adaptation in this system. Although, the two species remain clearly genetically differentiated. Regions with low recombination rates showed especially low introgression. Speciation reversal is therefore likely prevented by barriers other than habitat isolation.
AB - With only a few absolute geographic barriers in marine environments, the factors maintaining reproductive isolation among marine organisms remain elusive. However, spatial structuring in breeding habitat can contribute to reproductive isolation. This is particularly important for marine organisms that migrate to use fresh- or brackish water environments to breed. The Japanese Gasterosteus stickleback species, the Pacific Ocean three-spined stickleback (G. aculeatus) and the Japan Sea stickleback (G. nipponicus) overwinter in the sea, but migrate to rivers for spawning. Although they co-occur at several locations across the Japanese islands, they are reproductively isolated. Our previous studies in Bekanbeushi River showed that the Japan Sea stickleback spawns in the estuary, while the Pacific Ocean stickleback mainly spawns further upstream in freshwater. Overall genomic divergence was very high with many interspersed regions of introgression. Here, we investigated genomic divergence and introgression between the sympatric species in the much shorter Tokotan River, where they share spawning sites. The levels of genome-wide divergence were reduced and introgression was increased, suggesting that habitat isolation substantially contributes to a reduction in gene flow. We also found that genomic regions of introgression were largely shared between the two systems. Furthermore, some regions of introgression were located near loci with a heterozygote advantage for juvenile survival. Taken together, introgression may be partially driven by adaptation in this system. Although, the two species remain clearly genetically differentiated. Regions with low recombination rates showed especially low introgression. Speciation reversal is therefore likely prevented by barriers other than habitat isolation.
UR - http://www.scopus.com/inward/record.url?scp=85087613286&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087613286&partnerID=8YFLogxK
U2 - 10.1111/jeb.13664
DO - 10.1111/jeb.13664
M3 - Article
AN - SCOPUS:85087613286
JO - Journal of Evolutionary Biology
JF - Journal of Evolutionary Biology
SN - 1010-061X
ER -