## Abstract

A path-independent integral, j_{e}, is newly introduced for the analysis of steady temperature distribution near the tip of a crack in a homogeneous isotropic conductive plate with the steady current. By making use of the j_{e}-integral together with the j_{e}-integral, which has been introduced by the authors for the electric crack problems, an asymptotic solution is presented for the steady temperature distribution. It is shown that directly ahead of the crack, the temperature remains constant along the crack line. Finally, the temperature along the crack line of an edge crack in a conductive strip is determined analytically as a function of the crack length, the far-field temperature, and the total current introduced on the strip.

Original language | English |
---|---|

Pages (from-to) | 1990-1994 |

Number of pages | 5 |

Journal | Transactions of the Japan Society of Mechanical Engineers Series A |

Volume | 51 |

Issue number | 468 |

DOIs | |

Publication status | Published - 1985 Jan 1 |

## Keywords

- Conductive Plate
- Crack
- Electric Current. Temperature
- Fracture
- Path-Independent Integral

## ASJC Scopus subject areas

- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering