Passive swimming of a microcapsule in vertical fluid oscillation

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The artificial microswimmer is a cutting-edge technology with applications in drug delivery and micro-total-analysis systems. The flow field around a microswimmer can be regarded as Stokes flow, in which reciprocal body deformation cannot induce migration. In this study, we propose a microcapsule swimmer that undergoes amoeboidlike shape deformations under fluid oscillation conditions. This is a study on the propulsion principle using a capsule with a solid membrane, and one of only a few studies using fluid oscillation. The microswimmer consists of an elastic capsule containing fluid and a rigid sphere. Opposing forces are generated when fluid oscillations are applied, because the densities of the internal fluid and sphere are different. The opposing forces induce nonreciprocal body deformation, which leads to migration of the microswimmer under Stokes flow conditions. Using numerical simulations, we found that the microswimmer propels itself in one of two modes, i.e., stroke swimming or drag swimming. We discuss the feasibility of the proposed microswimmer and show that the most efficient swimmer can migrate tens of micrometers per second. These findings pave the way for future artificial microswimmer designs.

Original languageEnglish
Article number023108
JournalPhysical Review E
Volume98
Issue number2
DOIs
Publication statusPublished - 2018 Aug 27

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Passive swimming of a microcapsule in vertical fluid oscillation'. Together they form a unique fingerprint.

Cite this