### Abstract

In the information loss problem in black hole evaporation, the investigation of the purification partner of a Hawking particle is crucial. It is a well-known fact that the 3+1 dimensional spherically symmetric gravitational collapse can be mimicked by 1+1 dimensional moving mirror models. Since a detected particle in field theory is defined by what a particle detector observes, the diversity of detector designs yields a variety of particles and their partners. We provide a formula of generalized partners of detected particles emitted out of mirrors in an arbitrary motion for any Gaussian state in a free massless scalar field theory. Using our formula, we directly demonstrate information storage about initial phase information in a pure state of a detected particle and its partner. The form of the partner drastically changes depending on the detailed designs of particle detectors for Hawking radiation. In the case of a detected particle and its partner sensitive to information about initial phase, spatial configurations of the partner has long tails in a stage where only zero-point fluctuation is emitted out of the mirror.

Original language | English |
---|---|

Article number | 024003 |

Journal | Physical Review D |

Volume | 101 |

Issue number | 2 |

DOIs | |

Publication status | Published - 2020 Jan 2 |

### ASJC Scopus subject areas

- Physics and Astronomy (miscellaneous)

## Fingerprint Dive into the research topics of 'Partner formula for an arbitrary moving mirror in 1+1 dimensions'. Together they form a unique fingerprint.

## Cite this

*Physical Review D*,

*101*(2), [024003]. https://doi.org/10.1103/PhysRevD.101.024003