Oxygen tension affects lubricin expression in chondrocytes

Taku Hatta, Koshi Kishimoto, Hiroshi Okuno, Eiji Itoi

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology.

Original languageEnglish
Pages (from-to)2720-2727
Number of pages8
JournalTissue Engineering - Part A
Volume20
Issue number19-20
DOIs
Publication statusPublished - 2014 Jan 1

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Biomaterials
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Oxygen tension affects lubricin expression in chondrocytes'. Together they form a unique fingerprint.

Cite this