Optogenetic stimulation of the auditory pathway

Victor H. Hernandez, Anna Gehrt, Kirsten Reuter, Zhizi Jing, Marcus Jeschke, Alejandro Mendoza Schulz, Gerhard Hoch, Matthias Bartels, Gerhard Vogt, Carolyn W. Garnham, Hiromu Yawo, Yugo Fukazawa, George J. Augustine, Ernst Bamberg, Sebastian Kügler, Tim Salditt, Livia De Hoz, Nicola Strenzke, Tobias Moser

    Research output: Contribution to journalArticlepeer-review

    81 Citations (Scopus)

    Abstract

    Auditory prostheses can partially restore speech comprehension when hearing fails. Sound coding with current prostheses is based on electrical stimulation of auditory neurons and has limited frequency resolution due to broad current spread within the cochlea. In contrast, optical stimulation can be spatially confined, which may improve frequency resolution. Here, we used animal models to characterize optogenetic stimulation, which is the optical stimulation of neurons genetically engineered to express the light-gated ion channel channelrhodopsin-2 (ChR2). Optogenetic stimulation of spiral ganglion neurons (SGNs) activated the auditory pathway, as demonstrated by recordings of single neuron and neuronal population responses. Furthermore, optogenetic stimulation of SGNs restored auditory activity in deaf mice. Approximation of the spatial spread of cochlear excitation by recording local field potentials (LFPs) in the inferior colliculus in response to suprathreshold optical, acoustic, and electrical stimuli indicated that optogenetic stimulation achieves better frequency resolution than monopolar electrical stimulation. Virus-mediated expression of a ChR2 variant with greater light sensitivity in SGNs reduced the amount of light required for responses and allowed neuronal spiking following stimulation up to 60 Hz. Our study demonstrates a strategy for optogenetic stimulation of the auditory pathway in rodents and lays the groundwork for future applications of cochlear optogenetics in auditory research and prosthetics.

    Original languageEnglish
    Pages (from-to)1114-1129
    Number of pages16
    JournalJournal of Clinical Investigation
    Volume124
    Issue number3
    DOIs
    Publication statusPublished - 2014 Mar 3

    ASJC Scopus subject areas

    • Medicine(all)

    Fingerprint Dive into the research topics of 'Optogenetic stimulation of the auditory pathway'. Together they form a unique fingerprint.

    Cite this