Optimization of acoustic liposomes for improved in vitro and in vivo stability.

Nicolas Sax, Tetsuya Kodama

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Liposomes encapsulating perfluoropropane gas, termed acoustic liposomes (ALs), which can serve both for ultrasound (US) imaging and US-mediated gene delivery, have been reported. However, the echogenicity of ALs decreases within minutes in vivo due to gas diffusion and leakage, hindering time-consuming procedures such as contrast-enhanced 3D US imaging and raising the need for improvement of their stability. The stability of ALs preparations incorporating increasing ratios of anionic / unsaturated phospholipids, polyethylene glycol (PEG)ylated phospholipid and cholesterol was investigated by measurement of their reflectivity over time using a high-frequency US imaging system, both in vitro and in vivo. The retention of echogenicity of ALs in vitro is enhanced with increasing molar ratios of PEGylated lipids. Addition of 10 molar percent of an anionic phospholipid resulted in a 31% longer half-life, while cholesterol had the opposite effect. Assessment of the stability of an optimized composition showed a more than 2-fold increase of the detection half-life in mice. Presence of a PEG coating not only serves to provide "stealth" properties in vivo, but also contributes to the retention of the encapsulated gas. The optimized ALs reported here can be used as a contrast agent for lengthier imaging procedures.

Original languageEnglish
Pages (from-to)218-224
Number of pages7
JournalPharmaceutical research
Volume30
Issue number1
DOIs
Publication statusPublished - 2013 Jan

ASJC Scopus subject areas

  • Biotechnology
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Optimization of acoustic liposomes for improved in vitro and in vivo stability.'. Together they form a unique fingerprint.

Cite this