TY - JOUR
T1 - Optically transparent and refractive index-tunable ZrO2/ photopolymer composites designed for ultraviolet nanoimprinting
AU - Kudo, Shimpei
AU - Nagase, Koichi
AU - Kubo, Shoichi
AU - Sugihara, Okihiro
AU - Nakagawa, Masaru
PY - 2011/6
Y1 - 2011/6
N2 - Epoxy-based, acrylate-based, and urethane-based ultraviolet (UV)-curable resins containing acrylate-modified zirconia nanoparticles (ZrO2-NPs) were prepared. UV-cured composite films fabricated using an acrylate-based resin and an epoxy-based resin exhibited a high transmittance >90% at visible and near-infrared wavelengths until the weight fraction of ZrO2-NPs having an average zirconia core diameter of 4.0nm reached 0.66. Their refractive indices at 633 nm were widely controllable between 1.515 and 1.659 for the acrylate-based composite films and between 1.589 and 1.679 for the epoxy-based composite films. Thin films of the UV-curable composite resins could be transformed by UV nanoimprinting in pentafluoropropane using a fluorinated silica mold. Among the composite resins, the acrylate-based UV-curable composite resins showed facile workability by UV nanoimprinting. The epoxy-based UV-curable composite resins formed pattern shapes independent of the weight fraction of ZrO2-NPs. These results indicated that the acrylate-based and epoxy-based composite films with optical transparency, refractive index controllability, and workability had potential as optical materials of optical devices and as resist materials for dry etching.
AB - Epoxy-based, acrylate-based, and urethane-based ultraviolet (UV)-curable resins containing acrylate-modified zirconia nanoparticles (ZrO2-NPs) were prepared. UV-cured composite films fabricated using an acrylate-based resin and an epoxy-based resin exhibited a high transmittance >90% at visible and near-infrared wavelengths until the weight fraction of ZrO2-NPs having an average zirconia core diameter of 4.0nm reached 0.66. Their refractive indices at 633 nm were widely controllable between 1.515 and 1.659 for the acrylate-based composite films and between 1.589 and 1.679 for the epoxy-based composite films. Thin films of the UV-curable composite resins could be transformed by UV nanoimprinting in pentafluoropropane using a fluorinated silica mold. Among the composite resins, the acrylate-based UV-curable composite resins showed facile workability by UV nanoimprinting. The epoxy-based UV-curable composite resins formed pattern shapes independent of the weight fraction of ZrO2-NPs. These results indicated that the acrylate-based and epoxy-based composite films with optical transparency, refractive index controllability, and workability had potential as optical materials of optical devices and as resist materials for dry etching.
UR - http://www.scopus.com/inward/record.url?scp=79959458106&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959458106&partnerID=8YFLogxK
U2 - 10.1143/JJAP.50.06GK12
DO - 10.1143/JJAP.50.06GK12
M3 - Article
AN - SCOPUS:79959458106
SN - 0021-4922
VL - 50
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
IS - 6 PART 2
M1 - 06GK12
ER -