TY - JOUR
T1 - Ontogeny, distribution and potential roles of 5-hydroxymethylcytosine in human liver function
AU - Ivanov, Maxim
AU - Kals, Mart
AU - Kacevska, Marina
AU - Barragan, Isabel
AU - Kasuga, Kie
AU - Rane, Anders
AU - Metspalu, Andres
AU - Milani, Lili
AU - Ingelman-Sundberg, Magnus
N1 - Funding Information:
The authors would like to acknowledge support from Mr Rickard Wahlström and Mr Gunnar Hägglund from Q&Q Labs AB (Göteborg, Sweden) and Clinical Proteomics Mass Spectrometry core facility at Karolinska University Hospital and Science for Life Laboratory (Stockholm, Sweden) for providing assistance in mass spectrometry and data analysis. We also acknowledge the important help provided by Dr Lena Ekström, Dr Inger Jonasson, Dr Chunxiao Song, Dr Chuan He, Ms Susanne Virding, Ms Heidi Martikainen, Ms Silva Kasela, Dr Paula Ann Kivistik and Mr Viljo Soo. This work is supported by grants from The Swedish Research Council, the IMI-JU project MIP-DILI (grant agreement 115336), the Seurat-1 project NOTOX, the Estonian Science Foundation (ETF9293), the European Union through the European Social Fund (MJD71) and the European Regional Development Fund, in the frame of the Centre of Excellence in Genomics; and targeted financing from the Estonian Government [SF0180142s08].
PY - 2013/8/19
Y1 - 2013/8/19
N2 - Background: Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression.Results: In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmC comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development.Conclusions: Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity.
AB - Background: Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression.Results: In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmC comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development.Conclusions: Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity.
UR - http://www.scopus.com/inward/record.url?scp=84883156126&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883156126&partnerID=8YFLogxK
U2 - 10.1186/gb-2013-14-8-r83
DO - 10.1186/gb-2013-14-8-r83
M3 - Article
C2 - 23958281
AN - SCOPUS:84883156126
SN - 1465-6914
VL - 14
JO - Genome Biology
JF - Genome Biology
IS - 8
M1 - R83
ER -