Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We propose a systematic formulation of the migration behaviors of a vesicle in a Poiseuille flow based on Onsager's variational principle, which can be used to determine the most stable steady state. Our model is described by a combination of the phase field theory for the vesicle and the hydrodynamics for the flow field. The dynamics is governed by the bending elastic energy and the dissipation functional, the latter being composed of viscous dissipation of the flow field, dissipation of the bending energy of the vesicle, and the friction between the vesicle and the flow field. We performed a series of simulations on 2-dimensional systems by changing the bending elasticity of the membrane and observed 3 types of steady states, i.e., those with slipper shape, bullet shape, and snaking motion, and a quasi-steady state with zig-zag motion. We show that the transitions among these steady states can be quantitatively explained by evaluating the dissipation functional, which is determined by the competition between the friction on the vesicle surface and the viscous dissipation in the bulk flow.

Original languageEnglish
Article number114905
JournalJournal of Chemical Physics
Volume148
Issue number11
DOIs
Publication statusPublished - 2018 Mar 21

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow'. Together they form a unique fingerprint.

  • Cite this