One-dimensional Fe nanostructures formed on vicinal Au(111) surfaces

Susumu Shiraki, Hideki Fujisawa, Masashi Nantoh, Maki Kawai

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)


    In this study of fabricated one-dimensional (1D) nanostructures of Fe adatoms on vicinal Au(111) surfaces, the growth mechanism and electronic structures are investigated by scanning tunneling microscopy (STM) and by angle-resolved photoemission spectroscopy (ARPES). STM observations reveal that dosed Fe atoms are trapped at the lower corners of the steps. They create nucleation centers near the intersections between steps and discommensuration lines, and grow into evenly spaced Fe fragments located at face-centered-cubic (fcc) stacking regions of the substrate. The connection of these fragments aligned along the steps results in the formation of Fe monatomic rows. As the Fe coverage increases, the Fe growth proceeds predominantly at the fcc stacking regions, and forms quasi-1D nanostructures with undulating edges. At an Fe coverage of ∼0.6 ML, the fast-growing parts connect with the adjacent Fe structures and a two-dimensional network structure is built up. ARPES measurements reveal that the decoration of the step edges with Fe has a significant influence on the periodic potential of the surface state electrons confined between the regularly arranged steps. On the surface with Fe monatomic rows, photoemission spectra measured in the direction perpendicular to the steps show a parabolic dispersion of the Au(111) surface state with downward energy shift of the band bottom; the clean surface, in contrast, shows two 1D quantum-well levels. A simple analysis using a 1D Kronig-Penny model reveals that the Fe decoration reduces the potential barrier height at the steps from 20 to 4.6 eV Å, suggesting that the Fe adatoms work as attractive scatterers and increase the probability of transmission through the barriers. Furthermore, for the higher Fe coverage, the spectra reflecting the electronic nature of the 1D nanostructures show little dispersion, suggesting that the Fe 3d states are localized in the 1D structures.

    Original languageEnglish
    Pages (from-to)2033-2044
    Number of pages12
    Journaljournal of the physical society of japan
    Issue number7
    Publication statusPublished - 2005 Jul


    • Angle-resolved photoemission spectroscopy
    • Gold
    • Growth
    • Iron
    • Scanning tunneling microscopy
    • Vicinal substrate

    ASJC Scopus subject areas

    • Physics and Astronomy(all)


    Dive into the research topics of 'One-dimensional Fe nanostructures formed on vicinal Au(111) surfaces'. Together they form a unique fingerprint.

    Cite this