TY - JOUR
T1 - ON POLY-EULER NUMBERS
AU - Ohno, Yasuo
AU - Sasaki, Yoshitaka
N1 - Publisher Copyright:
© 2016 Australian Mathematical Publishing Association Inc.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/8/1
Y1 - 2017/8/1
N2 - Poly-Euler numbers are introduced as a generalization of the Euler numbers in a manner similar to the introduction of the poly-Bernoulli numbers. In this paper, some number-theoretic properties of poly-Euler numbers, for example, explicit formulas, a Clausen-von Staudt type formula, congruence relations and duality formulas, are given together with their combinatorial properties.
AB - Poly-Euler numbers are introduced as a generalization of the Euler numbers in a manner similar to the introduction of the poly-Bernoulli numbers. In this paper, some number-theoretic properties of poly-Euler numbers, for example, explicit formulas, a Clausen-von Staudt type formula, congruence relations and duality formulas, are given together with their combinatorial properties.
KW - Clausen-von Staudt theorem
KW - Euler number
KW - poly-Bernoulli number
KW - poly-Euler number
UR - http://www.scopus.com/inward/record.url?scp=84994137741&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84994137741&partnerID=8YFLogxK
U2 - 10.1017/S1446788716000495
DO - 10.1017/S1446788716000495
M3 - Article
AN - SCOPUS:84994137741
VL - 103
SP - 126
EP - 144
JO - Journal of the Australian Mathematical Society
JF - Journal of the Australian Mathematical Society
SN - 1446-7887
IS - 1
ER -