Numerical simulation of fracture of model Al-Si alloys

Lihe Qian, Hiroyuki Toda, Seishi Nishido, Toshikazu Akahori, Mitsuo Niinomi, Toshiro Kobayashi

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Hypoeutectic Al-Si alloys consist of primary α-Al and Al-Si eutectic phases and show typical elastic-plastic fracture. To understand their fracture behavior, fracture processes were simulated using an elastic-plastic finite-element method. The validity of the J-integral-based criterion was verified and applied to the simulations. A complicated model was used to simulate the fracture in an idealized dendritic microstructure, and four simplified models were intended to more clearly understand the interaction between a crack and individual α phases. Results show that the crack is attracted to the soft α phase when passing by the α phase, whereas it is repelled when the α phase is close in front of or behind the crack tip. The presence of α phase close in front of or behind the crack tip leads to an amplification of the driving force. However, the α phase beside the tip reduces the driving force. Furthermore, the fracture behavior is mainly affected by the adjacent α phase on one side around the crack tip, while the remote α phase on the opposite side has an offsetting effect. The local stress-strain fields were examined to analyze the simulated behavior. The simulated crack-growth path in the dendritic model was compared and verified with the experimentally observed path.

Original languageEnglish
Pages (from-to)2979-2992
Number of pages14
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume36
Issue number11
DOIs
Publication statusPublished - 2005 Nov

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Numerical simulation of fracture of model Al-Si alloys'. Together they form a unique fingerprint.

  • Cite this