Numerical Analysis of Cavitating Flow of Liquid Helium in a Converging-Diverging Nozzle

Jun Ishimoto, Kenjiro Kamijo

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The fundamental characteristics of the two-dimensional cavitating flow of liquid helium through a horizontal converging-diverging nozzle near the lambda point are numerically investigated to realize the further development and high performance of new multiphase superfluid cooling systems. First, the governing equations of the cavitating flow of liquid helium based on the unsteady thermal nonequilibrium multifluid model with generalized curvilinear coordinates system are presented, and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the cavitating flow of liquid helium though a horizontal converging-diverging nozzle is shown in detail, and it is also found that the generation of superfluid counterflow against normal fluid flow based on the thermomechanical effect is conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition, caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase.

Original languageEnglish
Pages (from-to)749-757
Number of pages9
JournalJournal of Fluids Engineering, Transactions of the ASME
Volume125
Issue number5
DOIs
Publication statusPublished - 2003 Sep 1
Externally publishedYes

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Numerical Analysis of Cavitating Flow of Liquid Helium in a Converging-Diverging Nozzle'. Together they form a unique fingerprint.

  • Cite this