Nucleon axial charge from quenched lattice QCD with domain wall fermions

S. Sasaki, K. Orginos, S. Ohta, T. Blum

Research output: Contribution to journalArticlepeer-review

82 Citations (Scopus)


We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA . The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi identity requires the vector and axial-vector currents to have the same renormalization, up to lattice spacing errors of order O(a2). The doubly blocked Wilson 2 (DBW2) gauge action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on lattices with (1.2 fm)3 and (2.4 fm) 3 volumes (a≈0.15 fm). On the large volume we find gA = 1.212 ±0.027(stat)±0.024(norm). The quoted systematic error is the dominant (known) one, corresponding to current renormalization. We discuss other possible remaining sources of error. This theoretical first principles calculation, which does not yet include isospin breaking effects, yields a value of gA only a little bit below the experimental one, 1.2670±0.0030.

Original languageEnglish
Article number054509
JournalPhysical Review D
Issue number5
Publication statusPublished - 2003
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Nucleon axial charge from quenched lattice QCD with domain wall fermions'. Together they form a unique fingerprint.

Cite this