Nuclear factor erythroid 2yrelated factor 2 regulates toll-like receptor 4 innate responses in mouse liver ischemia-reperfusion injury through akt-forkhead box protein o1 signaling network

Jing Huang, Shi Yue, Bibo Ke, Jianjun Zhu, Xiu Da Shen, Yuan Zhai, Masayuki Yamamoto, Ronald W. Busuttil, Jerzy W. Kupiec-Weglinski

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Background. Nuclear factor erythroid 2Yrelated factor 2 (Nrf2), a master regulator of the antioxidant host defense, maintains the cellular redox homeostasis. Methods. This study was designed to investigate the role and molecular mechanisms by which Nrf2 regulates toll-like receptor (TLR)4-driven inflammation response in a mouse model of hepatic warm ischemia (90 min) and reperfusion (6 hr) injury (IRI). Results. Activation of Nrf2 after preconditioning of wild-Type mouse recipients with cobalt protoporphyrin ameliorated liver IRI, evidenced by improved hepatocellular function (serum alanine aminotransferase levels), and preserved tissue architecture (histology Suzuki's score). In marked contrast, ablation of Nrf2 signaling exacerbated IRinduced liver inflammation and damage in Nrf2 knockout hosts irrespective of adjunctive cobalt protoporphyrin treatment. The Nrf2 activation reduced macrophage and neutrophil trafficking, proinflammatory cytokine programs, and hepatocellular necrosis or apoptosis while increasing antiapoptotic functions in IR-stressed livers. At the molecular level, Nrf2 activation augmented heme oxygenase-1 expression and Stat3 phosphorylation and promoted PI3K-Akt while suppressing forkhead box O (Foxo)1 signaling. In contrast, Nrf2 deficiency diminished PI3K-Akt and enhanced Foxo1 expression in the ischemic livers. In parallel in vitro studies, Nrf2 knockdown in lipopolysaccharidestimulated bone marrow-stimulated bone marrowYderived macrophages (BMMs) decreased heme oxygenase-1 and PI3K-Akt yet increased Foxo1 transcription, leading to enhanced expression of TLR4 proinflammatory mediators. Moreover, pretreatment of bone marrowYderived macrophages with PI3K inhibitor (LY294002) activated Foxo1 signaling, which in turn enhanced TLR4-driven innate responses in vitro. Conclusion. Activation of Nrf2 promoted PI3K-Akt, and inhibited Foxo1 activity in IR-Triggered local inflammation response. By identifying a novel integrated Nrf2-Akt-Foxo1 signaling network in PI3K-dependent regulation of TLR4-driven innate immune activation, this study provides the rationale for refined therapeutic approaches to manage liver inflammation and IRI in transplant recipients.

Original languageEnglish
Pages (from-to)721-728
Number of pages8
JournalTransplantation
Volume98
Issue number7
DOIs
Publication statusPublished - 2014 Oct 15

Keywords

  • Foxo1
  • Innate immunity
  • Ischemia-reperfusion injury
  • Nrf2
  • Tlr4

ASJC Scopus subject areas

  • Transplantation

Fingerprint Dive into the research topics of 'Nuclear factor erythroid 2yrelated factor 2 regulates toll-like receptor 4 innate responses in mouse liver ischemia-reperfusion injury through akt-forkhead box protein o1 signaling network'. Together they form a unique fingerprint.

  • Cite this