Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: Oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction

Zhen Wan, Gaoke Zhang, Xiaoyong Wu, Shu Yin

    Research output: Contribution to journalArticlepeer-review

    221 Citations (Scopus)

    Abstract

    We successfully synthesized novel solid state Z-scheme visible-light-driven Bi12GeO20/g-C3N4composite photocatalysts and investigated their photocatalytic activities for degradation of microcystin-LR and RhB, and for reduction of aqueous Cr(VI). The TEM and HRTEM images clearly showed the heterogeneous nanostructures at the interface between Bi12GeO20and g-C3N4. The as-prepared Bi12GeO20/g-C3N4composites exhibited enhanced photocatalytic activities for the degradation of microcystin-LR and RhB aqueous solution and reduction of aqueous Cr(VI) as compared to the pure Bi12GeO20and g-C3N4under visible-light irradiation. On the basis of the radical species trapping experiments and ESR analyses, O2[rad]and h+were confirmed to be the mainly active species involved in the degradation of organic pollutants and this reaction was identified to be an oxygen-induced pathway. Meanwhile, combined with the in situ ATR-FTIR spectroscopy and kinetic isotope effect investigations, the photocatalytic reduction of aqueous Cr(VI) was identified as a proton assisted electron transfer reaction. Moreover, the enhanced photocatalytic activities of the Bi12GeO20/g-C3N4composites can be attributed to the improved photo-absorption properties and effective separation of photo-induced charge carriers caused by the Z-scheme system of the as-prepared Bi12GeO20/g-C3N4composites.

    Original languageEnglish
    Pages (from-to)17-26
    Number of pages10
    JournalApplied Catalysis B: Environmental
    Volume207
    DOIs
    Publication statusPublished - 2017

    Keywords

    • BiGeO/g-CNcomposite
    • Kinetic isotope effect
    • Oxygen-induced pathway
    • Proton assisted electron transfer
    • Z-scheme

    ASJC Scopus subject areas

    • Catalysis
    • Environmental Science(all)
    • Process Chemistry and Technology

    Fingerprint

    Dive into the research topics of 'Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: Oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction'. Together they form a unique fingerprint.

    Cite this