Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals

Ryota Nakai, Naoto Nagaosa

Research output: Contribution to journalArticlepeer-review

Abstract

Nonreciprocal transport phenomena indicate that the forward and backward flows differ, and are attributed to broken inversion symmetry. In this paper, we study the nonreciprocity of the thermal and thermoelectric transport of electronic systems resulting from inversion-symmetry-broken crystal structures. The nonlinear electric, thermoelectric, and thermal conductivities are derived up to the second order in an electric field and a temperature gradient by using the Boltzmann equation with the relaxation time approximation. All the second-order conductivities appearing in this paper are described by two functions and their derivatives, and these are related to each other in the same way that linear conductivities are e.g. via the Wiedemann-Franz law. We found that non-vanishing thermal-transport coefficients in the zero-temperature limit appear in nonlinear conductivities, which dominate the thermal transport at a sufficiently low temperature. The nonlinear conductivities and possible observable quantities are estimated in a 1H monolayer of the transition metal dichalcogenides MoS2 and a polar semiconductor BiTeX(X=I,Br).

Original languageEnglish
JournalUnknown Journal
Publication statusPublished - 2018 Dec 6

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals'. Together they form a unique fingerprint.

Cite this