Non-coherent ToA estimation for UWB multipath channels using max-eigenvalue detection

Wei Shi, Ramesh Annavajjala, Philip V. Orlik, Andreas F. Molisch, Mari Ochiai, Akinori Taira

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Due to the fine delay resolution in ultra-wideband (UWB) wireless propagation channels, a large number of multipath components (MPC) can be resolved; and the first arriving MPC might not be the strongest one. This makes time-of-arrival (ToA) estimation, which essentially depends on determining the arrival time of the first MPC, highly challenging. In this paper, we consider non-coherent ToA estimation given a number of measurement trials, at moderate sampling rate and in the absence of knowledge of pulse shape. The proposed ToA estimation is based on detecting the presence of a signal in a moving time delay window, by using the largest eigenvalue of the sample covariance matrix of the signal in the window as the test statistic. We show that energy detection can be viewed as a special case of the eigenvalue detection. Max-eigenvalue detection (MED) generally has superior performance, due to the following reasons: 1) MED collects less noise, namely only the noise contained in the signal space, and 2) if multiple channel taps fall into the time window, the MED detector can collect energy from all of them. Simulation results confirm that MED outperforms the energy detection in IEEE 802.15.3a and 802.15.4a channels. Finally, the selection of the threshold of the MED is studied both by simulations and by random matrix theory.

Original languageEnglish
Title of host publication2012 IEEE International Conference on Communications, ICC 2012
Pages4509-4514
Number of pages6
DOIs
Publication statusPublished - 2012 Dec 1
Event2012 IEEE International Conference on Communications, ICC 2012 - Ottawa, ON, Canada
Duration: 2012 Jun 102012 Jun 15

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607

Other

Other2012 IEEE International Conference on Communications, ICC 2012
CountryCanada
CityOttawa, ON
Period12/6/1012/6/15

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Non-coherent ToA estimation for UWB multipath channels using max-eigenvalue detection'. Together they form a unique fingerprint.

Cite this