TY - JOUR
T1 - Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications
AU - Huang, Lu
AU - Yokoyama, Yoshihiko
AU - Wu, Wei
AU - Liaw, Peter K.
AU - Pang, Shujie
AU - Inoue, Akihisa
AU - Zhang, Tao
AU - He, Wei
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/8
Y1 - 2012/8
N2 - Zr-based bulk metallic glasses (BMGs) possess attractive properties for prospective biomedical applications. The present study designs Ni-free Zr-Cu-Al-Nb-Pd BMGs and investigates their in vitro biocompatibility by studying mechanical properties, bio-corrosion resistance, and cellular responses. The Ti-6Al-4V alloy is used as a reference material. It is found that the Zr-based BMGs exhibit good mechanical properties, including high strengths above 1600 MPa, high hardness over 4700 MPa, and low elastic moduli of 85-90 GPa. The Zr-based BMGs are corrosion resistant in a simulated body environment, as revealed by wide passive regions, low passive current densities, and high pitting overpotentials. The formation of ZrO 2-rich surface passive films of the Zr-based BMGs contributes to their high corrosion resistance, whereas their pitting corrosion in the phosphate buffered saline solution can be attributed to the sensitivity of the ZrO 2 films to the chloride ion. The general biosafety of the Zr-based BMGs is revealed by normal cell adhesions and cell morphologies. Moreover, the Zr/Cu content ratio in the alloy composition affects the biocompatibility of the Zr-based BMGs, by increasing their corrosion resistance and surface wettability with the increase of the Zr/Cu ratio. Effects of Zr/Cu ratios can be used to guide the future design of biocompatible Zr-based BMGs.
AB - Zr-based bulk metallic glasses (BMGs) possess attractive properties for prospective biomedical applications. The present study designs Ni-free Zr-Cu-Al-Nb-Pd BMGs and investigates their in vitro biocompatibility by studying mechanical properties, bio-corrosion resistance, and cellular responses. The Ti-6Al-4V alloy is used as a reference material. It is found that the Zr-based BMGs exhibit good mechanical properties, including high strengths above 1600 MPa, high hardness over 4700 MPa, and low elastic moduli of 85-90 GPa. The Zr-based BMGs are corrosion resistant in a simulated body environment, as revealed by wide passive regions, low passive current densities, and high pitting overpotentials. The formation of ZrO 2-rich surface passive films of the Zr-based BMGs contributes to their high corrosion resistance, whereas their pitting corrosion in the phosphate buffered saline solution can be attributed to the sensitivity of the ZrO 2 films to the chloride ion. The general biosafety of the Zr-based BMGs is revealed by normal cell adhesions and cell morphologies. Moreover, the Zr/Cu content ratio in the alloy composition affects the biocompatibility of the Zr-based BMGs, by increasing their corrosion resistance and surface wettability with the increase of the Zr/Cu ratio. Effects of Zr/Cu ratios can be used to guide the future design of biocompatible Zr-based BMGs.
KW - biocompatibility
KW - bulk metallic glass
KW - cell adhesion
KW - corrosion
KW - mechanical properties
UR - http://www.scopus.com/inward/record.url?scp=84863723211&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863723211&partnerID=8YFLogxK
U2 - 10.1002/jbm.b.32715
DO - 10.1002/jbm.b.32715
M3 - Article
C2 - 22689253
AN - SCOPUS:84863723211
VL - 100 B
SP - 1472
EP - 1482
JO - Journal of Biomedical Materials Research - Part B Applied Biomaterials
JF - Journal of Biomedical Materials Research - Part B Applied Biomaterials
SN - 1552-4973
IS - 6
ER -