Neutron-rich nuclei studied with AMD

H. Horiuchi, Y. Kanada-En'yo, Akira Ono

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


Antisymmetrized molecular dynamics (AMD) which is a newly constructed theory of quantum-mechanical microscopic simulation of heavy ion collisions is explained to present us with a very useful theoretical approach for the study of the structure-changes which occur when we go from ordinary nuclei to exotic neutron-rich nuclei. It is because of the flexible nature of the AMD wave function which can describe the formation and dissolution of clusters both in collision problems and in structure problems. After brief explanation of successful applications of AMD to heavy ion collisions and that of the frictional cooling technique for constructing minimum-energy wave functions, the results of the AMD analyses of Li, Be, and B isotopes are discussed. Very good reproduction of magnetic moments is obtained and is explained to be related with the structure-change between cluster structure and shell-model-like structure within each isotope. The superposition of AMD determinants is shown to reproduce neutron halo structure.

Original languageEnglish
Pages (from-to)279-283
Number of pages5
JournalZeitschrift für Physik A: Hadrons and Nuclei
Issue number3-4
Publication statusPublished - 1994 Sep 1
Externally publishedYes


  • 21.10
  • 24.10
  • 27.20

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Neutron-rich nuclei studied with AMD'. Together they form a unique fingerprint.

Cite this