Neutrino mass without lepton number violation, dark matter; And a strongly first-order phase transition

Shinya Kanemura, Kodai Sakurai, Hiroaki Sugiyama

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


We propose a model to explain the tiny masses of neutrinos with lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken Z2 symmetry that stabilizes the dark matter candidate (the lightest Z2-odd particle). In this model, Z2-odd particles play an important role in generating the masses of neutrinos. The scalar dark matter in our model can satisfy constraints on the dark matter abundance and those from direct searches. It is also shown that the strongly first-order phase transition, which is required for electroweak baryogenesis, can be realized in our model. In addition, the scalar potential can in principle contain CP-violating phases, which can also be utilized for baryogenesis. Therefore, three problems in the standard model-namely, the absence of neutrino masses, the dark matter candidate, and the mechanism to generate the baryon asymmetry of the Universe-may be simultaneously resolved at the TeV scale. The phenomenology of this model is also discussed briefly.

Original languageEnglish
Article number095024
JournalPhysical Review D
Issue number9
Publication statusPublished - 2017 Nov 20
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Neutrino mass without lepton number violation, dark matter; And a strongly first-order phase transition'. Together they form a unique fingerprint.

Cite this