TY - JOUR
T1 - Nefiracetam activation of CaM kinase II and protein kinase C mediated by NMDA and metabotropic glutamate receptors in olfactory bulbectomized mice
AU - Moriguchi, Shigeki
AU - Han, Feng
AU - Shioda, Norifumi
AU - Yamamoto, Yui
AU - Nakajima, Takeharu
AU - Nakagawasai, Osamu
AU - Tadano, Takeshi
AU - Yeh, Jay Z.
AU - Narahashi, Toshio
AU - Fukunaga, Koji
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/7
Y1 - 2009/7
N2 - Aberrant behaviors related to learning and memory in olfactory bulbectomized (OBX) mice have been documented in the previous studies. We reported that the impairment of long-term potentiation (LTP) of hippocampal CA1 regions from OBX mice was associated with down-regulation of CaM kinase II (CaMKII) and protein kinase C (PKC) activities. We now demonstrated that the nootropic drug, nefiracetam, significantly improved spatial reference memory-related behaviors as assessed by Y-maze and novel object recognition task in OBX mice. Nefiracetam also restored hippocampal LTP injured in OBX mice. Nefiracetam treatment restored LTP-induced PKCα (Ser657) and NR1 (Ser896) phosphorylation as well as increase in their basal phosphorylation in the hippocampal CA1 region of OBX mice. Likewise, nefiracetam improved LTP-induced CaMKIIα (Thr286) autophosphorylation and GluR1 (Ser831) phosphorylation and increased their basal phosphorylation. The enhancement of PKCα (Ser657) and CaMKIIα (Thr286) autophosphorylation by nefiracetam was inhibited by treatment with (±)-α-Methyl-(4-carboxyphenyl)glycine and DL-2-Amino-5-phosphonovaleric acid, respectively. The enhancement of LTP induced by nefiracetam is inhibited by treatment with 2-methyl-6-(phenylethynyl) -pyridine, but not by treatment with LY367385, suggesting that metabotropic glutamate receptor 5 (mGluR5) but not mGluR1 is involved in the nefiracetam-induced LTP enhancement. Taken together, nefiracetam ameliorates OBX-induced deficits in memory-related behaviors and impairment of LTP in the hippocampal CA1 region through activation of NMDAR and mGluR5, thereby leading to an increase in activities of CaMKIIα (Thr286) and PKCα (Ser657), respectively.
AB - Aberrant behaviors related to learning and memory in olfactory bulbectomized (OBX) mice have been documented in the previous studies. We reported that the impairment of long-term potentiation (LTP) of hippocampal CA1 regions from OBX mice was associated with down-regulation of CaM kinase II (CaMKII) and protein kinase C (PKC) activities. We now demonstrated that the nootropic drug, nefiracetam, significantly improved spatial reference memory-related behaviors as assessed by Y-maze and novel object recognition task in OBX mice. Nefiracetam also restored hippocampal LTP injured in OBX mice. Nefiracetam treatment restored LTP-induced PKCα (Ser657) and NR1 (Ser896) phosphorylation as well as increase in their basal phosphorylation in the hippocampal CA1 region of OBX mice. Likewise, nefiracetam improved LTP-induced CaMKIIα (Thr286) autophosphorylation and GluR1 (Ser831) phosphorylation and increased their basal phosphorylation. The enhancement of PKCα (Ser657) and CaMKIIα (Thr286) autophosphorylation by nefiracetam was inhibited by treatment with (±)-α-Methyl-(4-carboxyphenyl)glycine and DL-2-Amino-5-phosphonovaleric acid, respectively. The enhancement of LTP induced by nefiracetam is inhibited by treatment with 2-methyl-6-(phenylethynyl) -pyridine, but not by treatment with LY367385, suggesting that metabotropic glutamate receptor 5 (mGluR5) but not mGluR1 is involved in the nefiracetam-induced LTP enhancement. Taken together, nefiracetam ameliorates OBX-induced deficits in memory-related behaviors and impairment of LTP in the hippocampal CA1 region through activation of NMDAR and mGluR5, thereby leading to an increase in activities of CaMKIIα (Thr286) and PKCα (Ser657), respectively.
KW - CaM kinase II
KW - Long-term potentiation
KW - Metabotropic glutamate receptor
KW - Olfactory bulbectomized mice
KW - Protein kinase C
UR - http://www.scopus.com/inward/record.url?scp=67449152471&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67449152471&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2009.06122.x
DO - 10.1111/j.1471-4159.2009.06122.x
M3 - Article
C2 - 19457128
AN - SCOPUS:67449152471
SN - 0022-3042
VL - 110
SP - 170
EP - 181
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 1
ER -