Nanoscience of single polymer chains revealed by nanofishing

Ken Nakajima, Toshio Nishi

    Research output: Contribution to journalArticle

    12 Citations (Scopus)

    Abstract

    The invention of atomic force microscopy (AFM) enabled us to study the statistical properties of single polymer chains by a method called "nanofishing," which stretches a single polymer chain adsorbed on a substrate with its one end by picking it at the other end. A force-extension curve obtained for a single polystyrene chain in a Θ solvent (cyclohexane) shows good agreement with a worm-like chain model and, therefore, gives microscopic information about entropic elasticity. Furthermore, the nanofishing technique can be used for dynamic viscoelastic measurement of single polymer chains. An AFM cantilever is mechanically oscillated at its resonant frequency during the stretching process. This technique enables the estimation of quantitative and simultaneous elongation-dependent changes of stiffness and viscosity of a single chain widi the use of a phenomenological model. In this study, the effect of solvent on viscosity in low extension regions reveals that the viscosity is attributed to monomer-solvent friction. Thus, static and dynamic nanofishing techniques are shown to give powerful experimental proofs for several basic questions in polymer physics. The techniques are expected to reveal hidden properties of polymer chains or polymer solutions by any types of macroscopic measurements in the future.

    Original languageEnglish
    Pages (from-to)249-258
    Number of pages10
    JournalChemical Record
    Volume6
    Issue number5
    DOIs
    Publication statusPublished - 2006 Dec 1

    Keywords

    • Atomic force microscopy
    • Entropic elasticity
    • Nanofishing
    • Polymer physics
    • Viscosity

    ASJC Scopus subject areas

    • Chemistry(all)
    • Biochemistry
    • Chemical Engineering(all)
    • Materials Chemistry

    Fingerprint Dive into the research topics of 'Nanoscience of single polymer chains revealed by nanofishing'. Together they form a unique fingerprint.

  • Cite this