Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical current injection

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E Karasik, V. Leiman, V. Mitin, M. S. Shur

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We analyze terahertz superluminescent and laser diodes using the injection pumping in the multiple graphene-layer (GL)/van der Waals barrier layers (BLs) heterostructures. The operation of such terahertz radiation sources is associated with the interband transitions in the gapless GLs under the population inversion leading to the GL negative dynamic conductivity. These devices use the lateral injection of holes and vertical injection of electrons. Such an injection might have advantages over the lateral injection of the bipolar carriers. Due to relatively large conduction band offsets at the GL-BL interface, the population inversion at the vertical injection can be markedly hampered by the injection current heating of the two-dimensional electron-hole plasma in the GLs. We show that doping GLs and/or BLs can substantially diminish the carrier heating promoting the interband population. Numerical analysis assumed the BL material parameters of MoS2 and WSe2 and showed the feasibility of such terahertz radiation sources.

Original languageEnglish
Article number085023
JournalSemiconductor Science and Technology
Volume35
Issue number8
DOIs
Publication statusPublished - 2020 Aug

Keywords

  • grapheme
  • injection
  • super-luminescence
  • terahertz
  • van der Waals

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical current injection'. Together they form a unique fingerprint.

  • Cite this