TY - GEN
T1 - Multi-scale measurement of the change of the residual stress in a silicon chip during manufacturing from thin-film processing to packaging
AU - Kishi, Hiroki
AU - Sasaki, Takuya
AU - Ueta, Nobuki
AU - Suzuki, Ken
AU - Miura, Hideo
PY - 2009/12/1
Y1 - 2009/12/1
N2 - Both thermal and intrinsic stresses that occur during thin-film processing and packaging dominate the final residual stress in thin film electronic devices. Since the residual stress causes the shift of electronic functions of dielectric and semiconductor materials, these shifts sometimes degrade their performance and reliability. Therefore, it is very important to measure and control the residual stress in thin-film-applied products. In this study, the changes of the electronic performance of MOS transistors by mechanical stress were measured by applying a four-point bending method. The stress sensitivity of the transconductance of NMOS transistors increased from about 1%/100-MPa to about 15%/100-MPa by decreasing the gate length of the transistors from 400 nm to 150 nm. So, it showed miniaturization of transistors increased the stress sensitivity of the performance. One of the estimated important factors which dominated this increase was attributed to the interference of stress concentration fields occurred at the edges of gate electrodes. The change of the residual stress in a transistor structure caused by deposition of thin films was analyzed by applying a finite element method (FEM). The estimated change was validated by experiment using originally developed stress sensing chips. The estimated change of the stress due to deposition of gate electrode tungsten film was about 25MPa. The measured average stress was about 20MPa and it agreed well with the estimated value. Next, the change of the residual stress caused by the interference of the stress concentration fields between gate-electrodes was validated by applying this stress sensing chip. The measured change of the stress caused by making one slit by focused ion beam was about 70MPa and it agreed well with the estimated value of about 60MPa. In addition, the change of residual stress was increased with the more decreased width of slits. It was confirmed, therefore, that both the thin film process-induced stress and the packaging-induced stress change the final residual stress in a transistor structure and the change can be evaluated by our stress-sensing chip quantitatively.
AB - Both thermal and intrinsic stresses that occur during thin-film processing and packaging dominate the final residual stress in thin film electronic devices. Since the residual stress causes the shift of electronic functions of dielectric and semiconductor materials, these shifts sometimes degrade their performance and reliability. Therefore, it is very important to measure and control the residual stress in thin-film-applied products. In this study, the changes of the electronic performance of MOS transistors by mechanical stress were measured by applying a four-point bending method. The stress sensitivity of the transconductance of NMOS transistors increased from about 1%/100-MPa to about 15%/100-MPa by decreasing the gate length of the transistors from 400 nm to 150 nm. So, it showed miniaturization of transistors increased the stress sensitivity of the performance. One of the estimated important factors which dominated this increase was attributed to the interference of stress concentration fields occurred at the edges of gate electrodes. The change of the residual stress in a transistor structure caused by deposition of thin films was analyzed by applying a finite element method (FEM). The estimated change was validated by experiment using originally developed stress sensing chips. The estimated change of the stress due to deposition of gate electrode tungsten film was about 25MPa. The measured average stress was about 20MPa and it agreed well with the estimated value. Next, the change of the residual stress caused by the interference of the stress concentration fields between gate-electrodes was validated by applying this stress sensing chip. The measured change of the stress caused by making one slit by focused ion beam was about 70MPa and it agreed well with the estimated value of about 60MPa. In addition, the change of residual stress was increased with the more decreased width of slits. It was confirmed, therefore, that both the thin film process-induced stress and the packaging-induced stress change the final residual stress in a transistor structure and the change can be evaluated by our stress-sensing chip quantitatively.
UR - http://www.scopus.com/inward/record.url?scp=77950794011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950794011&partnerID=8YFLogxK
U2 - 10.1109/IMPACT.2009.5382116
DO - 10.1109/IMPACT.2009.5382116
M3 - Conference contribution
AN - SCOPUS:77950794011
SN - 9781424443413
T3 - IMPACT Conference 2009 International 3D IC Conference - Proceedings
SP - 293
EP - 296
BT - IMPACT Conference 2009 International 3D IC Conference - Proceedings
T2 - IMPACT Conference 2009 International 3D IC Conference
Y2 - 21 October 2009 through 23 October 2009
ER -