Multi-objective kriging-based optimization for high-fidelity wind turbine design

Lavi Rizki Zuhal, Ghifari Adam Faza, Pramudita Satria Palar, Koji Shimoyama

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we present the implementation of multi-objective Kriging-based optimization for high-fidelity wind turbine design. Specifically, a multi-objective Bayesian optimization (MOBO) technique based on expected hypervolume improvement and high-fidelity computational fluid dynamics are utilized to solve the wind turbine design optimization problem. The primary aim is to solve multi-objective wind turbine design optimization problem using a high-fidelity CFD solver without the need to obtain gradient information; although such information can be incorporated into MOBO if available. The radial basis function-based mesh deformation technique is applied to simultaneously deform the mesh and wind turbine geometry. This set of methodologies is then applied to the optimization of NREL Phase VI wind turbine where we applied 70 mesh deformation control points. The multi-objective optimization aims to maximize the torque production and minimize the blade volume of the NREL Phase VI wind turbine. By using this procedure, we obtained a set of non-dominated solutions that dominate the baseline design in terms of both volume and torque production. From the results, we observe that the torque-optimized and volume-optimized geometry yields 6% increase in torque and 7% decrease in blade volume, respectively.

Original languageEnglish
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105784
DOIs
Publication statusPublished - 2019 Jan 1
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: 2019 Jan 72019 Jan 11

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
CountryUnited States
CitySan Diego
Period19/1/719/1/11

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Multi-objective kriging-based optimization for high-fidelity wind turbine design'. Together they form a unique fingerprint.

  • Cite this

    Zuhal, L. R., Faza, G. A., Palar, P. S., & Shimoyama, K. (2019). Multi-objective kriging-based optimization for high-fidelity wind turbine design. In AIAA Scitech 2019 Forum (AIAA Scitech 2019 Forum). American Institute of Aeronautics and Astronautics Inc, AIAA. https://doi.org/10.2514/6.2019-0539