Motivic serre invariants modulo the square of L − 1

Takehiko Yasuda

Research output: Contribution to journalArticlepeer-review


Motivic Serre invariants defined by Loeser and Sebag are elements of the Grothendieck ring of varieties modulo L − 1. In this paper, we show that we can lift these invariants to modulo the square of L − 1 after tensoring the Grothendieck ring with Q under certain assumptions.

Original languageEnglish
Pages (from-to)547-554
Number of pages8
JournalProceedings of the American Mathematical Society
Issue number2
Publication statusPublished - 2017
Externally publishedYes

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics


Dive into the research topics of 'Motivic serre invariants modulo the square of L − 1'. Together they form a unique fingerprint.

Cite this