Monoclinic nanodomains in morphotropic phase boundary Pb(Mg 1/3Nb2/3)O3-PbTiO3

Y. Sato, T. Hirayama, Y. Ikuhara

    Research output: Contribution to journalArticlepeer-review

    17 Citations (Scopus)


    Crystalline structure is a fundamental characteristic of many materials, and drastic changes in properties may accompany crystal phase transitions. A prominent example of this is the morphotropic phase boundary of (Pb(Mg 1/3Nb2/3)O3-PbTiO3) single crystal, a region that exhibits a high piezoelectric effect. Although the highest piezoelectricity is often attributed to a monoclinic crystal phase, formation of ferroelectric nanodomains (NDs) complicates understanding of this crystal structure. In this Letter, we report dedicated transmission electron microscopy and electron diffraction analysis to understand the crystal structure at the ND level. Splitting of diffraction spots, caused by very small lattice distortion in the NDs, is important to understanding crystal structure and has been unambiguously observed. The results can be explained by monoclinic phase NDs. Combining these results with our previous findings on ND dynamics [Sato et al. Phys. Rev. Lett. 107, 187601 (2011)], monoclinic NDs can potentially make a considerable contribution to the piezoelectricity in these materials.

    Original languageEnglish
    Article number082905
    JournalApplied Physics Letters
    Issue number8
    Publication statusPublished - 2014 Feb 24

    ASJC Scopus subject areas

    • Physics and Astronomy (miscellaneous)


    Dive into the research topics of 'Monoclinic nanodomains in morphotropic phase boundary Pb(Mg <sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-PbTiO<sub>3</sub>'. Together they form a unique fingerprint.

    Cite this