Molecular magnetism of M 6 hexagon ring in D 3 d symmetric [(MCl) 6(XW 9O 33) 2] 12- (M = Cu II and Mn II, X = Sb III and As III)

Toshihiro Yamase, Hirofumi Ishikawa, Hiroko Abe, Keisuke Fukaya, Hiroyuki Nojiri, Hideo Takeuchi

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Ferromagnetic [n-BuNH 3] 12[(CuCl) 6(SbW 9O 33) 2]̇6H 2O (1) and antiferromagnetic [n-BuNH 3] 12[(MnCl) 6(AsW 9O 33) 2]̇6H 2O (4) have been synthesized and structurally and magnetically characterized. Two complexes are structural analogues of [n-BuNH 3] 12[(CuCl) 6(AsW 9O 33) 2]̇6H 2O (2) and [n-BuNH 3] 12[(MnCl) 6(SbW 9O 33) 2]̇6H 2O (3) with their ferromagnetic interactions, first reported by us in 2006.(1) When variable temperature (T) direct current (dc) magnetic susceptibility (χ M) data are analyzed with the isotropic exchange Hamiltonian for the magnetic exchange interactions, χ MT vs T curves fitted by a full matrix diagonalization (for 1) and by the Kambe vector coupling method/Van Vleck's approximation (for 4) yield J = +29.5 and -0.09 cm -1 and g = 2.3 and 1.9, respectively. These J values were significantly distinguished from +61.0 and +0.14 cm -1 for 2 and 3, respectively. The magnetization under the pulsed field (up to 10 3 T/s) at 0.5 K exhibits hysteresis loops in the adiabatic process, and the differential magnetization (dM/dB) plots against the pulsed field display peaks characteristic of resonant quantum tunneling of magnetization (QTM) at Zeeman crossed fields, indicating single-molecule magnets for 1-3. High-frequency ESR (HFESR) spectroscopy on polycrystalline samples provides g = 2.30, g = 2.19, and D = -0.147 cm -1 for 1 (S = 3 ground state), g = 2.29, g = 2.20, and D = -0.145 cm -1 for 2 (S = 3), and g = 2.03 and D = -0.007 cm -1 for 3 (S = 15). An attempt to rationalize the magnetostructural correlation among 1-4, the structurally and magnetically modified D 3d-symmetric M (=Cu II and Mn II) 6 hexagons sandwiched by two diamagnetic α-B-[XW 9O 33] 9- (X = Sb III and As III) ligands through M-(μ 3-O)-W linkages, is made. The strongest ferromagnetic coupling for the Cu 6 hexagon of 2, the structure of which approximately provides the Cu 63-O) 12 cylindrical geometry, is demonstrated by the polarization mechanism based on the point-dipole approximation, which provides a decrease of the ferromagnetic interaction due to the out-of-cylinder deviation of the Cu atoms for 1. The different nature of the magnetic exchange interaction in 3 and 4 is understood by the combined effect of the out-of plane deviation (the largest for 4) of the Mn atoms from the Mn(μ 3-O) 2Mn least-squares plane and the antiferromagnetic contribution arising from the large Mn-O-Mn bond angle. The primary contribution to D is discussed in terms of the magnetic dipole-dipole interaction between the electrons located on the magnetic sites in the M 6 hexagon.

Original languageEnglish
Pages (from-to)4606-4619
Number of pages14
JournalInorganic chemistry
Volume51
Issue number8
DOIs
Publication statusPublished - 2012 Apr 16

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Molecular magnetism of M <sub>6</sub> hexagon ring in D <sub>3 d</sub> symmetric [(MCl) <sub>6</sub>(XW <sub>9</sub>O <sub>33</sub>) <sub>2</sub>] <sup>12-</sup> (M = Cu <sup>II</sup> and Mn <sup>II</sup>, X = Sb <sup>III</sup> and As <sup>III</sup>)'. Together they form a unique fingerprint.

Cite this