Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid

Norie Momiyama, Hideaki Tabuse, Hirofumi Noda, Masahiro Yamanaka, Takeshi Fujinami, Katsunori Yamanishi, Atsuto Izumiseki, Kosuke Funayama, Fuyuki Egawa, Shino Okada, Hiroaki Adachi, Masahiro Terada

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

Original languageEnglish
Pages (from-to)11353-11359
Number of pages7
JournalJournal of the American Chemical Society
Volume138
Issue number35
DOIs
Publication statusPublished - 2016 Sep 7

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid'. Together they form a unique fingerprint.

Cite this