Modulation of leaf economic traits and trait relationships by climate

Ian J. Wright, Peter B. Reich, Johannes H.C. Cornelissen, Daniel S. Falster, Philip K. Groom, Kouki Hikosaka, William Lee, Christopher H. Lusk, Ülo Niinemets, Jacek Oleksyn, Noriyuki Osada, Hendrik Poorter, David I. Warton, Mark Westoby

Research output: Contribution to journalArticlepeer-review

503 Citations (Scopus)

Abstract

Aim Our aim was to quantify climatic influences on key leaf traits and relationships at the global scale. This knowledge provides insight into how plants have adapted to different environmental pressures, and will lead to better calibration of future vegetation-climate models. Location The data set represents vegetation from 175 sites around the world. Methods For more than 2500 vascular plant species, we compiled data on leaf mass per area (LMA), leaf life span (LL), nitrogen concentration (N mass) and photosynthetic capacity (A mass). Site climate was described with several standard indices. Correlation and regression analyses were used for quantifying relationships between single leaf traits and climate. Standardized major axis (SMA) analyses were used for assessing the effect of climate on bivariate relationships between leaf traits. Principal components analysis (PCA) was used to summarize multidimensional trait variation. Results At hotter, drier and higher irradiance sites, (1) mean LMA and leaf N per area were higher; (2) average LL was shorter at a given LMA, or the increase in LL was less for a given increase in LMA (LL-LMA relationships became less positive); and (3) A mass, was lower at a given N mass or the increase in A mass was less for a given increase in N mass. Considering all traits simultaneously, 18% of variation along the principal multivariate trait axis was explained by climate. Main conclusions Trait-shifts with climate were of sufficient magnitude to have major implications for plant dry mass and nutrient economics, and represent substantial selective pressures associated with adaptation to different climatic regimes.

Original languageEnglish
Pages (from-to)411-421
Number of pages11
JournalGlobal Ecology and Biogeography
Volume14
Issue number5
DOIs
Publication statusPublished - 2005 Sep 1

Keywords

  • Irradiance
  • Leaf life span
  • Leaf mass per area
  • Nitrogen
  • Photosynthesis
  • Plant strategies
  • Rainfall
  • Temperature

ASJC Scopus subject areas

  • Global and Planetary Change
  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Fingerprint Dive into the research topics of 'Modulation of leaf economic traits and trait relationships by climate'. Together they form a unique fingerprint.

Cite this