Modified scattering for the higher-order anisotropic nonlinear Schrödinger equation in two space dimensions

Nakao Hayashi, Pavel I. Naumkin

Research output: Contribution to journalArticlepeer-review

Abstract

We study the asymptotic behavior of solutions to the Cauchy problem for the higher-order anisotropic nonlinear Schrödinger equation in two space dimensions. We will show the modified scattering for solutions. We continue to develop the factorization techniques, which were started in the papers of N. Hayashi and P. I. Naumkin [Z. Angew. Math. Phys. 59(6), 1002-1028 (2008); J. Math. Phys. 56(9), 093502 (2015)], N. Hayashi and T. Ozawa [Ann. I.H.P.: Phys. Theor. 48, 17-37 (1988)], and T. Ozawa [Commun. Math. Phys. 139(3), 479-493 (1991)]. The crucial point of our approach presented here is the L2-boundedness of the pseudodifferential operators.

Original languageEnglish
Article number071502
JournalJournal of Mathematical Physics
Volume62
Issue number7
DOIs
Publication statusPublished - 2021 Jul 1

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Modified scattering for the higher-order anisotropic nonlinear Schrödinger equation in two space dimensions'. Together they form a unique fingerprint.

Cite this