Modification of the descending thoracic aortic anastomotic site using biodegradable felt: Study in a canine model with or without basic fibroblast growth factor

Hidenori Fujiwara, Yoshikatsu Saiki, Mitsuru Sato, Naoya Sakamoto, Toshiro Ohashi, Masaaki Sato, Yasuhiko Tabata, Koichi Tabayashi

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Objectives: We investigated the outcomes of reinforcing anastomotic sites using (1) nonbiodegradable polytetrafluoroethylene (PTFE) felt, (2) biodegradable polyglycolic acid (PGA) felt, and (3) PGA felt with basic fibroblast growth factor (bFGF) in a canine descending thoracic aortic replacement model. Methods: Thirty-seven beagles underwent descending thoracic aorta replacement using a prosthetic graft with one of the above-mentioned reinforcements or no reinforcement for controls. Histologic evaluations were carried out 1 month and 3 months after surgery. The biomechanical strength of the anastomosis was assessed along the longitudinal axis of the aortic segments using a tensile tester. Local compliance at the anastomotic site was also evaluated in the circumferential direction. Results: The media was significantly thinner in the PTFE group than in the control group (65.8% ± 5.1% vs 95.0% ± 9.3% of normal thickness; P < .05). Relative to the control group, the adventitial layer was significantly thinner in the PTFE group (42.3% ± 8.2% of control; P < .05) but significantly thicker in the PGA and the PGA + bFGF groups (117.2% ± 11.3% and 134.1% ± 14.2% of control, respectively; P < .05). There were more vessels in the adventitial layer in the PGA + bFGF group than in the control, PTFE, and PGA groups (29.2 ± 2.1/mm2 vs 13.8 ± 0.8, 5.4 ± 0.7, 17.0 ± 1.3/mm2, respectively; P < .01). There were no significant differences between the four groups in the failure force at anastomotic sites. Local compliance at the anastomotic site was higher in the PGA group than that in the PTFE group (11.6 ± 1.6 10-6 m2/N vs 5.6 ± 1.9 10-6 m2/N; P < .05). Conclusion: Reinforcement of the experimental aortic wall with PTFE felt resulted in thinning of the media and adventitia and fewer vessels at the anastomotic site. These histologic changes were not observed when biodegradable felt was used. The bFGF failed to augment the modification of the aortic wall with the exception of increased adventitial vessel number. Biomechanical strength of the anastomosis along the longitudinal axis was comparable in all four groups; however, local vascular compliance was better in the biodegradable PGA felt group.

Original languageEnglish
Pages (from-to)194-202
Number of pages9
JournalJournal of Vascular Surgery
Volume51
Issue number1
DOIs
Publication statusPublished - 2010 Jan

ASJC Scopus subject areas

  • Surgery
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Modification of the descending thoracic aortic anastomotic site using biodegradable felt: Study in a canine model with or without basic fibroblast growth factor'. Together they form a unique fingerprint.

Cite this