Modeling the brain connectivity for pattern analysis

Itir Onal, Emre Aksan, Burak Velioglu, Orhan Firat, Mete Ozay, Ilke Oztekin, Fatos T.Yarman Vural

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

An information theoretic approach is proposed to estimate the degree of connectivity for each voxel with its neighboring voxels. The neighborhood system is defined by spatial and functional connectivity metrics. Then, a local mesh of variable size is formed around each voxel using spatial or functional neighborhood. The mesh arc weights, called Mesh Arc Descriptors (MAD), are estimated by a linear regression model fitted to the voxel intensity values of the functional Magnetic Resonance Images (fMRI). Finally, the error term of the linear regression equation is used to estimate the mesh size for a voxel by optimizing Akaike's information Criterion, Bayesian Information Criterion and Rissanen's Minimum Description Length. fMRI measurements are obtained during a memory encoding and retrieval experiment performed on a subject who is exposed to the stimuli from 10 semantic categories. For each sample, a k-NN classifier is trained using the Mesh Arc Descriptors (MAD) having the variable mesh sizes. The classification performances reflect that the suggested variable-size Mesh Arc Descriptors represents the mental states better than the classical multi-voxel pattern representation. Moreover, we observe that the degree of connectivities in the brain greatly varies for each voxel.

Original languageEnglish
Title of host publicationProceedings - International Conference on Pattern Recognition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3339-3344
Number of pages6
ISBN (Electronic)9781479952083
DOIs
Publication statusPublished - 2014 Dec 4
Event22nd International Conference on Pattern Recognition, ICPR 2014 - Stockholm, Sweden
Duration: 2014 Aug 242014 Aug 28

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Other

Other22nd International Conference on Pattern Recognition, ICPR 2014
Country/TerritorySweden
CityStockholm
Period14/8/2414/8/28

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Modeling the brain connectivity for pattern analysis'. Together they form a unique fingerprint.

Cite this