Modeling and control of a hybrid wheeled legged robot: Disturbance analysis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The most common cause of injuries among older adults is falling. Recently, there have been numerous developments in assistive and exoskeleton systems. However, comparatively little work is being done on systems that may help people to keep an upright position and avoid falling over. In this preliminary work, we investigate the feasibility of the wheel-legged robot as a balance-assist system for the people who cannot maintain balance and walk because of an injury, old age, or neurological or physical disorder. We perform motion stability analyses of the wheel-legged robot under different conditions such as system modeling errors, sensor noise, and external disturbances. The linear quadratic regulator (LQR) control approach is adopted for balancing, steering, and translational position control of the robot. To validate our control framework and visualize results, the robot is modeled and tested in the Gazebo simulator using ROS (Robot Operating System). Subsequently, the simulation results demonstrate the effectiveness of the LQR control method under the translational and rotational pushes of the wheel-legged system for human-robot interaction.

Original languageEnglish
Title of host publication2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages466-473
Number of pages8
ISBN (Electronic)9781728167947
DOIs
Publication statusPublished - 2020 Jul
Event2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020 - Boston, United States
Duration: 2020 Jul 62020 Jul 9

Publication series

NameIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
Volume2020-July

Conference

Conference2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020
CountryUnited States
CityBoston
Period20/7/620/7/9

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications
  • Software

Fingerprint Dive into the research topics of 'Modeling and control of a hybrid wheeled legged robot: Disturbance analysis'. Together they form a unique fingerprint.

Cite this