Model for predicting phase transformation and yield strength of vanadium microalloyed carbon steels

Ho Hung Kuo, Minoru Umemoto, Kazuki Sugita, Goro Miyamoto, Tadashi Furuhara

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

An integrated model for predicting recrystallization, phase transformation and yield strength of vanadium- microalloyed carbon steel (V-steel) is developed. Two effects of vanadium addition on recrystallization are assumed: one is the solute-drag effect on mobility of grain boundary, the other is pinning-effect on austenite grain growth due to vanadium carbide (VC) precipitate in austenite. The austenite grain size is considered as the control variable for nucleation density in grain corner, grain boundary, and grain interior during phase transformation. Thermodynamic data for transformation including para-equilibrium of carbon concentration and driving force were calculated using ThermoCalc software. The vanadium addition leads to α/γ -interphase VC precipitation in ferrite, which accelerates the diffusion rate of carbon in austenite at α/γinterface and increases nucleation sites for intragranular ferrite transformation. In consequence, the ferrite fraction and grain size are increased. Brandt model27) is conducted to predict pearlite transformation. The lamellar spacing is considered as a function of carbon concentration and undercooling. The alloying elements, ferrite and pearlite fractions, ferrite grain size, and lamellar spacing were taken into account for predicting strength of V-free steels. Modified Ashby-Orowan equation is then used to calculate the VC precipitation strengthening of V-steels. Using this model the calculated results obtained are in good agreement with experimental results.

Original languageEnglish
Pages (from-to)669-678
Number of pages10
JournalIsij International
Volume52
Issue number4
DOIs
Publication statusPublished - 2012

Keywords

  • Carbon steel
  • Phase transformation
  • Recrystallization
  • Vanadium
  • Yield strength

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Model for predicting phase transformation and yield strength of vanadium microalloyed carbon steels'. Together they form a unique fingerprint.

Cite this