Model-based study on activeness of neuronal dendrites and its functional significance

Mitsuyuki Nakao, Norihiro Katayama, Mitsuaki Yamamoto

Research output: Contribution to journalArticlepeer-review


Recent neurophysiological experiments showed that neuronal dendrites could be recognized as active systems rather than passive transmission lines due to the existence of varied types of voltage-gated ionic channels. This study is performed to clarify functional significance of such an active propery of neuronal dendrites. In order to achieve this, a compartment neuron modal is constructed so that the model closely mimicks the most recently found responsiveness of neurons with active dendrites. Based on the model, generation and propagation of action potentials and the associated behavior of intracellular Ca2+ concentration are simulated for various combinations of synaptic inputs. Inhibitory synaptic inputs are found to control the propagating dendritic area of the action potentials. Since the propagation of the action potential is accompanied by an increase of intracellular Ca2+ concentration, the inhibitory input could shape synaptic organizations on the dendritic tree through the well-known Ca2+-induced synaptic plastihity. In addition, an action potential generation in the soma is shown to differentiate levels of the interacellular Ca2+ concentration in the whole dendritic area. Finally, we reach the hypothesis that the activeness of the dendritic system could serve to broadcast the information concerning somatic firing to the whole dendritic tree, which is mediated by the associated increase of the intracellular Ca2+ concentration.

Original languageEnglish
Pages (from-to)254-264
Number of pages11
JournalJapanese Journal of Medical Electronics and Biological Engineering
Issue number3
Publication statusPublished - 1997 Jan 1
Externally publishedYes

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Model-based study on activeness of neuronal dendrites and its functional significance'. Together they form a unique fingerprint.

Cite this