TY - JOUR
T1 - Misalignment of the desired and measured center of pressure describes falls caused by slip during turning
AU - Yamaguchi, Takeshi
AU - Higuchi, Hironari
AU - Onodera, Hiroshi
AU - Hokkirigawa, Kazuo
AU - Masani, Kei
N1 - Publisher Copyright:
© 2016 Yamaguchi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - In this study, desired center of pressure (dCOP) was introduced to evaluate dynamic postural stability. The dCOP is defined as a virtual point on the ground, where the moment around the body center of mass (COM) becomes zero when dCOP and the measured COP (mCOP) coincide. We hypothesized that, when the misalignment of the dCOP and mCOP (dCOP-mCOP) increases up to a certain value due to a large perturbation during walking, it becomes difficult to make a compensatory step and to recover balance of COM and to continue gait. Here we tested this hypothesis in slipping during turning. The study involved twelve healthy young adult males with an average age of 21.5±1.9 yrs. The subjects were asked to (1) walk straight and turn 60 degrees to the right with the right foot (spin turn) on a dry floor surface, and (2) walk straight and 60 degrees spin turn to the right on a slippery lubricated surface. The dCOP-mCOP during turning in the slip trial with fall were significantly larger, particularly in x-direction (i.e., the medial-lateral direction during straight walk), than that in no-slip trial and slip trial without fall. The receiver operating characteristic (ROC) analysis indicated that the dCOP-mCOP in x-direction is good indicator of falling (area under the curve (AUC) = 0.93) and the threshold in the dCOP-mCOP in x-direction to distinguish for fall or no-fall was 0.55 m. These results support our hypothesis in slipping during turning.
AB - In this study, desired center of pressure (dCOP) was introduced to evaluate dynamic postural stability. The dCOP is defined as a virtual point on the ground, where the moment around the body center of mass (COM) becomes zero when dCOP and the measured COP (mCOP) coincide. We hypothesized that, when the misalignment of the dCOP and mCOP (dCOP-mCOP) increases up to a certain value due to a large perturbation during walking, it becomes difficult to make a compensatory step and to recover balance of COM and to continue gait. Here we tested this hypothesis in slipping during turning. The study involved twelve healthy young adult males with an average age of 21.5±1.9 yrs. The subjects were asked to (1) walk straight and turn 60 degrees to the right with the right foot (spin turn) on a dry floor surface, and (2) walk straight and 60 degrees spin turn to the right on a slippery lubricated surface. The dCOP-mCOP during turning in the slip trial with fall were significantly larger, particularly in x-direction (i.e., the medial-lateral direction during straight walk), than that in no-slip trial and slip trial without fall. The receiver operating characteristic (ROC) analysis indicated that the dCOP-mCOP in x-direction is good indicator of falling (area under the curve (AUC) = 0.93) and the threshold in the dCOP-mCOP in x-direction to distinguish for fall or no-fall was 0.55 m. These results support our hypothesis in slipping during turning.
UR - http://www.scopus.com/inward/record.url?scp=84969799522&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969799522&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0155418
DO - 10.1371/journal.pone.0155418
M3 - Article
C2 - 27166954
AN - SCOPUS:84969799522
VL - 11
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 5
M1 - e0155418
ER -