Abstract
We study the minimization of an M-convex function introduced by Murota. It is shown that any vector in the domain can be easily separated from a minimizer of the function. Based on this property, we develop a polynomial time algorithm.
Original language | English |
---|---|
Pages (from-to) | 215-220 |
Number of pages | 6 |
Journal | Discrete Applied Mathematics |
Volume | 84 |
Issue number | 1-3 |
DOIs | |
Publication status | Published - 1998 May 15 |
Externally published | Yes |
Keywords
- Base Polyhedron
- Convex function
- Matroid
- Minimization
ASJC Scopus subject areas
- Discrete Mathematics and Combinatorics
- Applied Mathematics