Micrometer-size vesicle formation triggered by UV light

Tatsuya Shima, Takahiro Muraoka, Tsutomu Hamada, Masamune Morita, Masahiro Takagi, Hajime Fukuoka, Yuichi Inoue, Takashi Sagawa, Akihiko Ishijima, Yuki Omata, Takashi Yamashita, Kazushi Kinbara

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Vesicle formation is a fundamental kinetic process related to the vesicle budding and endocytosis in a cell. In the vesicle formation by artificial means, transformation of lamellar lipid aggregates into spherical architectures is a key process and known to be prompted by e.g. heat, infrared irradiation, and alternating electric field induction. Here we report UV-light-driven formation of vesicles from particles consisting of crumpled phospholipid multilayer membranes involving a photoactive amphiphilic compound composed of 1,4-bis(4-phenylethynyl)benzene (BPEB) units. The particles can readily be prepared from a mixture of these components, which is casted on the glass surface followed by addition of water under ultrasonic radiation. Interestingly, upon irradiation with UV light, micrometer-size vesicles were generated from the particles. Neither infrared light irradiation nor heating prompted the vesicle formation. Taking advantage of the benefits of light, we successfully demonstrated micrometer-scale spatiotemporal control of single vesicle formation. It is also revealed that the BPEB units in the amphiphile are essential for this phenomenon.

Original languageEnglish
Pages (from-to)7289-7295
Number of pages7
JournalLangmuir
Volume30
Issue number25
DOIs
Publication statusPublished - 2014 Jul 1

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Micrometer-size vesicle formation triggered by UV light'. Together they form a unique fingerprint.

Cite this