Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major (Crustacea: Thalassinidea)

K. Kinoshita, M. Wada, K. Kogure, T. Furota

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Microbial activity and accumulation of organic matter in the burrow of the thalassinidean mud shrimp, Upogebia major, were studied on a tidal flat along the northern coast of Tokyo Bay, Japan. The burrow of U. major is Y-shaped with an upper U-shaped part plus a lower I-shaped part. Its lower part can extend to a depth of 2 m. In the present study, we compare electron transport system activity (ETSA), bacterial abundance and organic matter content [total organic carbon (TOC), total nitrogen (TN) and chlorophyll a (chl. a)] of the burrow wall sediment with the tidal flat surface and non-burrow sediments. We also compared the U- and I-shaped part in terms of these parameters. ETSA in the burrow wall was higher than at the tidal flat surface in the warmer season, and was always higher than at surrounding non-burrow sediments. Bacterial abundance in the burrow wall was higher than at the tidal flat surface and surrounding sediment. TOC and TN contents in the burrow wall were two to three times higher than those at the tidal flat surface and non-burrow sediments, regardless of season. However, there was no significant difference in chl. a content between burrow wall and tidal flat surface. These results suggest that organic enrichment of the burrow wall is a result of organic matter particles such as phytodebris accumulation along the burrow wall. For all parameters of the burrow walls, no statistical differences were found between the two parts. Present results indicate that U. major actively transports the water containing suspended organic particles not only through the U-part but also into the deeper I-part. These indicate that burrow of the mud shrimp provides a dynamic environment for microbial community in tidal flat sediment.

Original languageEnglish
Pages (from-to)277-283
Number of pages7
JournalMarine Biology
Volume153
Issue number3
DOIs
Publication statusPublished - 2008 Jan
Externally publishedYes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Aquatic Science
  • Ecology

Fingerprint Dive into the research topics of 'Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major (Crustacea: Thalassinidea)'. Together they form a unique fingerprint.

Cite this